Cours pour la 9eme Harmos sur construire un triangle et ses droites. Construire un triangle à partir des longueurs de 2 côtés et l’angle qu’ils forment : Exemple : Triangle ABC avec AB = 4 cm, AC = 5 cm et = 50°. Je trace un segment [AB] de 4 cm. Avec le rapporteur je trace une demi-droite d’origine A pour former un angle de 50°. A partir de A, je mesure 5 cm (règle ou compas) sur cette demi-droite….
Cours pour la 9eme Harmos sur les angles et les triangles. Somme des angles :
Propriété : Dans un triangle, la somme des 3 angles est égale à 180°.
Autrement dit, pour tout triangle ABC on a : (ABC) ̂ + (ACB) ̂ + (BAC) ̂ = 180°. Exemple : Si (ABC) ̂ = 64,8° et (ACB) ̂ = 84, alors (BAC) ̂ = 180 – 64,8 – 84 = 31,2°. Remarque : Si la somme des angles n’est pas égale à…
Cours sur « Inégalité triangulaire » pour la 9eme Harmos Notions sur « Les triangles » Tapez une équation ici. Le plus court chemin pour aller d’un point à un autre est le segment qui relie ces deux points. Donc dans un triangle, la longueur de n’importe quel côté est inférieure à la somme de la longueur des deux autres côtés. Si A, B et M sont les trois sommets d’un triangle, alors
AB<AM+MB
Cette inégalité s’appelle l’inégalité triangulaire. Cas particulier : l’égalité
Si AB=AC+CB alors les…
Cours sur « Construction d’un triangle quand on connait les trois côtés » pour la 9eme Harmos Notions sur « Les triangles » Tapez une équation ici. Construire le triangle ABC tel que :
AB = 6 cm AC = 4 cm BC = 5 cm.
Ce triangle existe car 6<4+5. On construit un des 3 côtés, par exemple le segment [AB] de longueur 6 cm. Avec le compas, on trace un arc de cercle de centre A et de rayon 4 cm. Avec le compas,…
Cours sur « Construction d’un triangle quand on connait deux côtés et un angle » pour la 9eme Harmos Notions sur « Les triangles » Tapez une équation ici. Construire le triangle ABC tel que :
( BAC) ̂= 40° AB=6 cm AC=7 cm On construit le segment [AB] de longueur 6 cm. À l’aide du rapporteur, on construit un angle de 40° de sommet A et dont un côté est la demi-droite [AB). On place le point C sur la demi-droite à 7 cm…
Cours sur « Construction d’un triangle connaissant deux angles et un côté » pour la 9eme Harmos Notions sur « Les triangles » Tapez une équation ici. Construire le triangle ABC tel que :
( BAC) ̂= 40° (ABC) ̂ = 60° AB = 5 cm
On trace le segment [AB] de longueur 5 cm. À l’aide du rapporteur, on construit un angle de 40° de sommet A et dont un côté est la demi-droite [AB). À l’aide du rapporteur, on construit un angle de 60°…
Cours sur « Somme des angles d’un triangle » pour la 9eme Harmos Notions sur « Les triangles » Tapez une équation ici. Propriété de la somme des angles d’un triangle.
Quel que soit le triangle ABC, on a :
(BAC) ̂ +( ABC) ̂ + (ACB) ̂ = 180°
Propriété :
La somme des mesures des trois angles d’un triangle est égale à 180°. Exemple : Soit le triangle ABC ci-contre. Calculer l’angle (ACB) ̂. (BAC) ̂ = 60° et (ABC) ̂ = 80°
La somme des mesures…
Cours sur « Définition et construction des médiatrices » pour la 9eme Harmos Notions sur « Les triangles » Tapez une équation ici. Définition :
La médiatrice d’un segment [AB] est la droite (d) perpendiculaire à ce segment et passant par son milieu I. Construction de la médiatrice à l’équerre. Etape 1 Avec une règle graduée on mesure le segment [AB] puis on place son milieu I (en divisant la distance AB par 2 mentalement ou à la calculette). Etape 2 On trace à l’aide…
Cours sur « Propriété de la médiatrice et construction au compas » pour la 9eme Harmos Notions sur « Les triangles » Propriété de la médiatrice d’un segment.
Tout point situé sur la médiatrice d’un segment est à égale distance des extrémités de ce segment.
Si un point M se situe sur la médiatrice de [AB] alors MA=MB Si un point M est tel que : AM=BM, alors le point M appartient à la médiatrice du segment [AB]. Donc M appartient à la médiatrice de [AB]….
Cours sur « Les hauteurs d’un triangle » pour la 9eme Harmos Notions sur « Les triangles » Définition : La hauteur issue d’un sommet dans un triangle est la droite passant par ce sommet et perpendiculaire au côté opposé. Attention : Il faut parfois prolonger le côté [BC] pour pouvoir tracer la hauteur issue de A. Construction d’une hauteur
On place un côté de l’équerre sur (BC), l’autre côté de l’équerre passe par A. Il faut parfois prolonger en pointillés le côté [BC], l’autre…
Triangles – Cours : 9eme Harmos – Géométrie Construction de triangles Si on connaît la longueur des 3 côtés:
Voici, la méthode à travers un exemple.
Construire un triangle ABC tel que AB = 4 cm, BC = 2,5 cm et AC = 3,5 cm.
1) On trace un segment [AB] de 4 cm. 2) On trace deux arcs de cercle :
– un de centre A et de rayon 3,5 cm
– un de centre B et de rayon 2,5 cm. Si on connaît…
Triangles : 9eme Harmos Prenez les trois premières lettres de votre nom de famille, et reliez les points correspondants sur la
figure ci-dessous de façon à former un triangle Ressources pédagogiques en libre téléchargement à imprimer et/ou modifier.
Public ciblé : élèves de : 9eme Harmos Collège – Domaines : Géométrie Mathématiques
Sujet : Triangles : 9eme Harmos – Cours – Exercices – Géométrie : 9eme Harmos – Mathématiques Voir les fichesTélécharger les documents Une activité pour découvrir le résultat de la somme…
Ce site utilise des cookies afin de fournir ses services et analyser son trafic. Vous pouvez paramétrer vos choix pour les accepter ou vous y opposer. Le lien "Cookies" en bas de page, vous permet de modifier vos choix.
Fonctionnement du site
Toujours activé
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistiques / Audience
The technical storage or access that is used exclusively for statistical purposes.The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing / Publicité
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.